A postdoctoral position is available in the group of Dr. Michihiro Ohta at the Research Institute for Energy Conservation, the National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. https://staff.aist.go.jp/ohta.michihiro/paper.html

Position highlights:

This research project is supported as the International Joint Research Program for Innovative Energy Technology funded by the Ministry of Economy, Trade and Industry (METI), Japan. In this project, we have developed environmentally friendly and high-performance thermoelectric modules in the international framework. Especially, we focus on development the chalcogenide based thermoelectrics modules and testing system with German Aerospace Center (DLR) under MOU. The postdoctoral position’s function is to support and progress the research and activities of the research laboratory and collaboration with AIST and DLR under the direction and mentorship of the Principle Investigator (Dr. Michihiro Ohta).


Position type: AIST Postdoctoral Researcher

Contract period: to 31 March 2018 (with possibility of up to 2 year extension subject to funding)

Treatment:

The salary for the above-mentioned position is either 2,200, 2,350, or 2,500 JPY/hour depending on experience and qualifications (based on AIST pays scale).

7 hours 45 min working hours a day. 5 day a week. excluding national holidays.

Compensated absences, commuter allowance, and social insurance will be available.

Requirements:

The Ph.D. degree in the related field obtained within maximum of 7 years before the start of the employment

Application documents:
Selection process:

Documentary screening and interview

Thermoelectric studies in AIST:

AIST is one of the leading research institute in Japan. Our research covers all aspects of thermoelectrics, from materials, module, and testing. In materials development, we have successfully developed new thermoelectric sulfides called as tetrahedrites and colusites. The materials mainly consist of non-toxic and earth-abundant elements, copper and sulfur. They provide the environment-friendly and cost-effective thermoelectrics. In device development, we have successfully developed record efficiency (11%) thermoelectric module. The dramatic improvements in the performance was achieved by forming nanostructures in bulk thermoelectric materials. We also developed high accuracy thermoelectric module testing system. More than 350 modules have been investigated with this system. It is de facto standard system in Japan.